Annons
Annons
Annons
Annons
Annons
Annons
Annons
Annons
© Creative Commons Nanopelare Elektronikproduktion | 05 oktober 2018

Elektroners spinn kan skapa framtida informationsteknologi

Forskare från Linköpings universitet och Kungliga Tekniska Högskolan har tagit fram ett nytt koncept för en komponent som effektivt kan överföra information som bärs av elektroners spinn till ljus i rumstemperatur, det framkommer av ett pressmeddelande.
På ett liknande sätt som hur jordklotet snurrar runt sin egen axel kan elektroners spinn liknas vid att de roterar medurs eller moturs runt sin axel. Riktningen på rotationen kallas uppspinn respektive nerspinn. I spinntronik (elektronik som utnyttjar både elektronens spinn och dess laddning) kan dessa båda tillstånd representera 0 och 1 och på så sätt bära information, på motsvarande sätt som elektronladdningen bär information i dagens elektronik.

Informationen som kodas med elektronernas spinntillstånd kan i princip omvandlas till ljus av en ljuskälla, så att informationen kan skickas över långa avstånd i exempelvis optiska fiber. Möjligheten att på så sätt överföra kvantinformation öppnar upp för framtida informationsteknologi som använder både elektronspinn och ljus, och interaktionen mellan dem, så kallad ”opto-spinntronik”.

Informationsöverföringen i opto-spinntronik bygger på principen att elektronens spinntillstånd, alltså uppspinn eller nerspinn, avgör egenskaperna hos ljuset som avges. Forskarna vill använda cirkulärt polariserat ljus, i vilket det elektromagnetiska fältet roterar antingen medurs eller moturs runt ljusets färdriktning. Riktningen på ljusets elektriska fält avgörs av elektronens spinn. Men det finns en hake.

– Det största problemet är att elektroner lätt växlar spinn vid högre temperaturer. En viktig aspekt för framtida tillämpningar av opto-spinntronik är att effektiv överföring av kvantinformation behöver kunna ske i rumstemperatur, men vid rumstemperatur är elektronernas spinn nästan slumpmässigt riktad. Det innebär att informationen som kodats med elektronernas spinn förloras eller blir alltför otydlig för att kunna omvandlas på ett tillförlitligt sätt till distinkt cirkulärt polariserat ljus, säger Weimin Chen vid Institutionen för fysik, kemi och biologi, IFM.

Nu har forskare vid Linköpings universitet och Kungliga Tekniska Högskolan designat en effektiv gränsyta mellan spinn och ljus.

– Gränsytan bevarar, och till och med förstärker, elektronernas spinnsignal vid rumstemperatur. Dessutom kan den omvandla dessa spinnsignaler till motsvarande signaler av cirkulärt polariserat ljus som färdas i en önskad riktning, säger Weimin Chen.

Den viktigaste delen i komponenten är extremt små skivor av galliumkvävearsenid, GaNAs. Skivorna är bara ett par nanometer höga och staplade på varandra med ett tunt lager galliumarsenid (GaAs) mellan sig, så att de bildar skorstensformade nanopelare. Som en jämförelse är diametern på ett hårstrå ungefär tusen gånger större än nanopelaren.

Den föreslagna komponentens unika förmåga att förstärka spinnsignaler beror på minimala defekter som forskarna har introducerat i materialet. Färre än en per en miljon galliumatomer förskjuts från sina bestämda platser i materialets kristallstruktur. Defekterna som då uppstår i materialet fungerar som effektiva spinnfilter som kan filtrera bort elektroner med ”fel” spinntillstånd och bevara dem som har den önskade spinnriktningen.

– En viktig fördel med nanopelardesignen är att ljuset enkelt kan ledas och kopplas in och ut mer effektivt, säger Shula Chen, artikelns huvudförfattare.

Forskningen har finansierats med stöd av Vetenskapsrådet, regeringens strategiska satsning på avancerade funktionella material (AFM) vid Linköpings universitet, och Energimyndigheten.

Kommentarer

Vänligen notera följande: Kritiska kommentarer är tillåtna och till och med uppmuntrade. Diskussioner är välkomna. Verbala övergrepp, förolämpningar, rasistiska och homofobiska kommentarer är inte tillåtna och sådana inlägg kommer att raderas.
Annons
Annons
Visa fler nyheter
2018-10-15 23:56 V11.6.0-1